FUNDACIÓN UNIVERSITARIA MINUTO DE DIOS

FUNDACIÓN UNIVERSITARIA MINUTO DE DIOS

CERES REGIONAL MADRID

miércoles, 5 de septiembre de 2012

GUÍA NO 4

1. ¿QUE ES LA PROBABILIDAD Y COMO SE PUEDE APLICAR ?

Es una medida numérica de la posibilidad de que ocurra un evento.


  • Las probabilidades se pueden usar como medidas del grado de incertidumbre.
  • Podría determinar la posibilidad de cada evento.
  • Cuanto más alta es la probabilidad de un suceso, mayor es el grado de certeza de que ocurrirá al hacer el experimento aleatorio.

2.  ¿ COMO APLICAR LA PROBABILIDAD EN SALUD OCUPACIONAL ?

Considero que a través de la aplicación de la probabilidad en los estudios y muestreos estadísticos  nos sirven de gran aporte para minimizar los riesgos, accidentes y enfermedades de origen profesional, teniendo como base las investigaciones, técnicas y métodos mediante los cuales podamos tener un sondeo inicial y posteriormente analizar los sondeos y los resultados de estos , con el fin de obtener resultados que nos den la certeza para tomar las mejores decisiones de manera inmediata , a corto , mediano o largo plazo, con el fin de garantizar una salud plena a los trabajadores.

3. ¿ COMO DETERMINAR LOS LIMITES DE CONFIANZA EN UNA MUESTRA?

 El establecimiento de un modelo de muestreo, que tenga asociadas probabilidades conocidas de selección de cada una de la unidades de la población, es garantía de que la muestra es representativa (por su forma)
La precisión de una estimación puede expresarse generalmente a través de dos elementos: el error tolerable (δ) y la confianza (γ) o confiabilidad. El error tolerable es la diferencia que estamos dispuestos a aceptar entre el verdadero valor poblacional (θ)10 y el calculado con la muestra (􀀃 θ n )11 y la confianza es justamente, la probabilidad12 de que el error tolerable no sea
sobrepasado. De esta manera la ecuación de donde se despeja el tamaño de muestra es :
P [θ − θ􀀃 n ≤ δ] ≤ γ La relación entre el tamaño n de la muestra y el tamaño N de la población, para
una precisión constante especificada.

El tamaño de muestra crece muy lento aún con grandes incrementos del tamaño de la población, asi por ejemplo para N = 300 resulta una muestra de n=120. Sin embargo si el tamaño de la población se duplicará a 600, la muestra sería de 150. Notese que no se duplica. Es más, si N = 900, el tamaño de muestra será de n = 164. Si la población fuese muy grande, digamos N = 1000000, el tamaño de muestra sería n = 200, el cual es el valor límite (tope), manteniendo en todos los casos el mismo nivel de precisión requerido. la validez interna, la comparabilidad se logra através del control de los factores de confusión. En esta situación podría encontrarse la asociación de las variables edad de corte y rendimiento, en cada grupo de suertes que tengan el mismo número de cortes, de esta manera, dentro de cada grupo el número de cortes permanece constante y puede lograrse la comparación deseada, siempre y cuando no existan otros posibles factores de confusión, como podrían ser la aplicación de madurantes en forma diferencial en las suertes observadas.
A esta solución, para lograr validez interna, se le llama construcción de bloques. No obstante
existen otras soluciones para este mismo problema de falta de comparabilidad, como por ejemplo, la aleatorización o involucrar en el modelo de análisis al factor de confusión como una variable, que permite hacer las comparaciones para cada nivel del factor, cuando se da este caso, al factor de confusión en el modelo se le conoce como covariable. Notese que la identificación de potenciales factores de confusión, no es tarea de un estadístico, sino del investigador que conoce el campo de su disciplina específica.

4. ¿QUE PRUEBAS DE HIPOTESIS EXISTEN Y COMO SE APLICAN ?



PASOS DE LA PRUEBA DE HIPÓTESIS
 Expresar la hipótesis nula.
 Expresar la hipótesis alternativa.
 Especificar el nivel de significancia.
 Determinar el tamaño de la muestra.
 Establecer los valores críticos que establecen las regiones de rechazo de las de no rechazo.
 Determinar la prueba estadística.
 Coleccionar los datos y calcular el valor de la muestra de la prueba estadística apropiada.
 Determinar si la prueba estadística ha sido en la zona de rechazo a una de no rechazo.
 Determinar la decisión estadística.
 Expresar la decisión estadística en términos del problema.

Fiabilidad y Validez

Si medimos el mismo objeto en varias ocasiones…
Se esperaría que dichas mediciones sean parecidas   =  Baja Variabilidad
Que los datos de las mediciones tengan como centro la medida real = No haya sesgo

La Fiabilidad esta relacionada con la variabilidad
La Validez esta relacionada con el sesgo
















No hay comentarios:

Publicar un comentario